A rapid-mutation approximation for cell population dynamics.

نویسندگان

  • Rainer K Sachs
  • Lynn Hlatky
چکیده

Carcinogenesis and cancer progression are often modeled using population dynamics equations for a diverse somatic cell population undergoing mutations or other alterations that alter the fitness of a cell and its progeny. Usually it is then assumed, paralleling standard mathematical approaches to evolution, that such alterations are slow compared to selection, i.e., compared to subpopulation frequency changes induced by unequal subpopulation proliferation rates. However, the alterations can be rapid in some cases. For example, results in our lab on in vitro analogues of transformation and progression in carcinogenesis suggest there could be periods where rapid alterations triggered by horizontal intercellular transfer of genetic material occur and quickly result in marked changes of cell population structure.We here initiate a mathematical study of situations where alterations are rapid compared to selection. A classic selection-mutation formalism is generalized to obtain a "proliferation-alteration" system of ordinary differential equations, which we analyze using a rapid-alteration approximation. A system-theoretical estimate of the total-population net growth rate emerges. This rate characterizes the diverse, interacting cell population acting as a single system; it is a weighted average of subpopulation rates, the weights being components of the Perron-Frobenius eigenvector for an ergodic Markov-process matrix that describes alterations by themselves. We give a detailed numerical example to illustrate the rapid-alteration approximation, suggest a possible interpretation of the fact that average aneuploidy during cancer progression often appears to be comparatively stable in time, and briefly discuss possible generalizations as well as weaknesses of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Modified Linear Approximation for Assessment of Rigid Block Dynamics

This study proposes a new linear approximation for solving the dynamic response equations of a rocking rigid block. Linearization assumptions which have already been used by Hounser and other researchers cannot be valid for all rocking blocks with various slenderness ratios and dimensions; hence, developing new methods which can result in better approximation of governing equations while keepin...

متن کامل

Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm

An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...

متن کامل

Pair Approximations of Takeover Dynamics in Regular Population Structures

In complex adaptive systems, the topological properties of the interaction network are strong governing influences on the rate of flow of information throughout the system. For example, in epidemiological models, the structure of the underlying contact network has a pronounced impact on the rate of spread of infectious disease throughout a population. Similarly, in evolutionary systems, the top...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2010